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Linearity
Parametric correlation and linear regression
analyses are based on straight-line relationships
between variables. The simplest way of checking
whether your data are likely to meet this assump-
tion is to examine a scatterplot of the two vari-
ables, or a SPLOM for more than two variables.
Figure 5.17(a) illustrates how a scatterplot was
able to show a nonlinear relationship between
number of species of invertebrates and area of
mussel clumps on a rocky shore. Smoothing func-
tions through the data can also reveal nonlinear
relationships. We will discuss diagnostics for
detecting nonlinearity further in Chapter 5.

Independence
This assumption basically implies that all the
observations should be independent of each
other, both within and between groups. The most
common situation where this assumption is not
met is when data are recorded in a time sequence.
For experimental designs, there are modifications
of standard analyses of variance when the same
experimental unit is observed under different
treatments or times (Chapters 10 and 11). We will
discuss independence in more detail for each type
of analysis in later chapters.

4.3 Transforming data

We indicated in the previous section that transfor-
mation of data to a different scale of measure-
ment can be a solution to distributional
assumptions, as well as related problems with var-
iance homogeneity and linearity. In this section,
we will elaborate on the nature and application of
data transformations.

The justification for transforming data to dif-
ferent scales before data analysis is based, at least
in part, on the appreciation that the scales of
measurement we use are often arbitrary. For
example, many measurements we take are based
on a decimal system. This is probably related to
the number of digits we have on our hands; char-
acters from the Simpsons would probably
measure everything in units of base eight! Sokal &
Rohlf (1995) point out that linear (arithmetic)

scale of measurement we commonly use can be
viewed in the same way. For example, we might
measure the length of an object in centimeters
but we could just as easily measure the length in
log units, such as log centimeters. In fact, we
could do so directly just by altering the scale on
our measuring device, like using a slide ruler
instead of a normal linear ruler.

Surprisingly, transformations are quite
common for measurements we encounter in
everyday life. Sometimes, these transformations
simply change the zero value, i.e. adding a con-
stant. Slightly more complex transformations
may change the zero value but also rescale the
measurements by a constant value, e.g. the
change in temperature units from Fahrenheit to
Celsius. Such transformations are linear, in that
the relationship between the original variable
and the transformed variable is a perfect straight
line. Statistical tests of null hypotheses will be
identical, in most cases, for the untransformed
and the transformed data.

More commonly in data analysis, particularly
in biology, are transformations that change the
data in a nonlinear fashion. The most common
transformation is the log transformation, where
the transformed data are simply the logs (to any
base) of the original data. The log transformation,
while nonlinear, is monotonic, i.e. the order of
data values after transformation is the same as
before. A log-transformed scale is often the
default scale for commonly used measurements.
For example, pH is simply the log of the concentra-
tion of H" ions, and most cameras measure aper-
ture as f-stops, with each increase in f
representing a halving of the amount of light
reaching the film, i.e. a log2 scale. 

There are at least five aims of data transforma-
tions for statistical analyses, especially for linear
models:

• to make the data and the model error terms
closer to a normal distribution (i.e. to make the
distribution of the data symmetrical),

• to reduce any relationship between the mean
and the variance (i.e. to improve homogeneity
of variances), often as a result of improving
normality,
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• to reduce the influence of outliers, especially
when they are at one end of a distribution,

• to improve linearity in regression analyses,
and

• to make effects that are multiplicative on the
raw scale additive on a transformed scale, i.e.
to reduce the size of interaction effects
(Chapters 6 and 9).

The most common use of transformations in
biology is to help the data meet the distributional
and variance assumptions required for linear
models. Emerson (1991), Sokal & Rohlf (1995) and
Tabachnick & Fidell (1996) provide excellent
descriptions and justification of transformations.
These authors are reassuring to those who are
uncomfortable about the idea of transforming
their data, feeling that they are “fiddling” the
data to increase the chance of getting a significant
result. A decision to transform, however, is always
made before the analysis is done.

Remember that after any transformation, you
must re-check your data to ensure the transforma-
tion improved the distribution of the data (or at
least didn’t make it any worse!). Sometimes, log or
square root transformations can skew data just as
severely in the opposite direction and produce
new outliers!

A transformation is really changing your
response variable and therefore your formal
null hypothesis. You might hypothesize that
growth of plants varies with density, and formal-
ize that as the H0 that the mean growth of plants
at high density equals the mean growth at
low density. If you are forced to log-transform

your data, the null hypothesis
becomes “mean log-growth
does not vary with density”,
or you might say that in the
first case, growth is defined as
mg of weight gained, whereas

after log-transforming, growth is the log-mg
weight gained.

4.3.1 Transformations and distributional
assumptions

The most common type of transformation useful
for biological data (especially counts or measure-
ments) is the power transformation (Emerson
1991, Neter et al. 1996), which transforms Y to Yp,
where p is greater than zero. For data with right
skew, the square root (") transformation, where
p!0.5, is applicable, particularly for data that are
counts (Poisson distributed) and the variance is
related to the mean. Cube roots (p!0.33), fourth
roots (p!0.25), etc., will be increasingly effective
for data that are increasingly skewed; fourth root
transformations are commonly used for abun-
dance data in ecology when there are lots of zeros
and a few large values (Figure 4.8). For very skewed
data, a reciprocal transformation can help,
although interpretation is a little difficult
because then order of values is reversed.

Transforming data to logarithms (the base is
irrelevant although base 10 logs are more familiar
to readers) will also make positively skewed distri-
butions more symmetrical (Keene 1995; Figure
4.9), especially when the mean is related to the
standard deviation. Such a distribution is termed
lognormal because it can be made normal by log
transforming the values. Use log (Y"c) where c is
an appropriate constant if there are zeros in the
data set because you can’t take the log of zero.
Some people use the smallest possible value for
their variable as a constant, others use an arbi-
trarily small number, such as 0.001 or, most
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Figure 4.8. Distribution of counts
of limpets in quadrats at Point
Nepean: (a) untransformed (raw),
(b) square root transformed, and (c)
fourth root transformed. (M Keough
& G. Quinn, unpublished data.)



commonly, 1. Berry (1987)
pointed out that different
values of c can produce differ-
ent results in ANOVA tests and
recommended using a value of
c that makes the distribution of the residuals as
symmetrical as possible (based on skewness and
kurtosis of the residuals).

If skewness is actually negative, i.e. the distri-
bution has a long left tail, Tabachnick & Fidell
(1996) suggested reflecting the variable before
transforming. Reflection simply involves creating
a constant by adding one to the largest value in
the sample and then subtracting each observation
from this constant.

These transformations can be considered part
of the Box–Cox family of transformations:

when *!0 (4.1)

log(Y) when *!0 (4.2)

When *!1, we have no change to the distribu-
tion, when *!0.5 we have the square root trans-
formation, and when *!#1 we have the
reciprocal transformation, etc. (Keene 1995, Sokal

Y* # 1
*

& Rohlf 1995). The Box–Cox family of transforma-
tions can also be used to find the best transforma-
tion, in terms of normality and homogeneity of
variance, by an iterative process that selects a
value of * that maximizes a log-likelihood func-
tion (Sokal & Rohlf 1995).

When data are percentages or proportions,
they are bounded at 0% and 100%. Power transfor-
mations don’t work very well for these data
because they change each end of the distribution
differently (Emerson 1991). One common
approach is to use the angular transformation,
specifically the arcsin transformation. With the
data expressed as proportions, then transform Y
to sin#1("Y), and the result is shown in Figure
4.10. It is most effective if Y is close to zero or one,
and has little effect on mid-range proportions.

Finally, we should mention the rank transfor-
mation, which converts the observations to ranks,
as described in Chapter 3 for non-parametric tests.
The rank transformation is different from the
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Figure 4.9. Frequency distribution
and box plots for concentrations of
Cl# for 39 sites from forested
watersheds in the Catskill
Mountains in New York State:
(a) untransformed and 
(b) log10-transformed (data from
Lovett et al. 2000).

Figure 4.10. Distribution of
percentage cover of the alga
Hormosira banksii in quadrats at
Point Nepean: (a) untransformed
(raw) and (b) arcsin transformed. (M
Keough & G. Quinn, unpublished
data.)
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other transformations discussed here because it is
bounded by one and n, where n is the sample size.
This is an extreme transformation, as it results in
equal differences (one unit, except for ties)
between every pair of observations in this ranked
set, regardless of their absolute difference. It
therefore results in the greatest loss of informa-
tion of all the monotonic transformations.

For common linear models (regressions and
ANOVAs), transformations will often improve nor-
mality and homogeneity of variances and reduce
the influence of outliers. If unequal variances and
outliers are a result of non-normality (e.g. skewed
distributions), as is often the case with biological
data, then transformation (to log or square root
for skewed data) will improve all three at once.

4.3.2 Transformations and linearity
Transformations can also be used to improve line-
arity of relationships between two variables and
thus make linear regression models more appro-
priate. For example, allometric relationships with
body size have a better linear fit after one or both
variables are log-transformed. Note that nonlin-
ear relationships might be better investigated
with a nonlinear model, especially one that has a
strong theoretical justification.

4.3.3 Transformations and additivity
Transformations also affect the way we measure
effects in linear models. For example, let’s say we
were measuring the effect of an experimental
treatment compared to a control at two different
times. If the means of our control groups are dif-
ferent at each time, how we measure the effect of
the treatment is important. Some very artificial
data are provided in Table 4.1 to illustrate the
point. At Time 1, the treatment changes the mean
value of our response variable from 10 to 5 units, a
decrease of 5 units. At Time 2 the change is from 50
to 25 units, a change of 25 units. On the raw scale
of measurement, the effects of the treatments are
very different, but in percentage terms, the effects
are actually identical with both showing a 50%
reduction. Biologically, which is the most mean-
ingful measure of effect, a change in raw scale or a
change in percentage scale? In many cases, the per-
centage change might be more biologically rele-
vant and we would want our analysis to conclude

that the treatment effects are the same at the two
times. Transforming the data to a log scale
achieves this (Table 4.1).

Interpretation of interaction terms in more
complex linear models (Chapter 9) can also be
affected by the scale on which data are measured.
Transforming data to reduce interactions may be
useful if you are only interested in main effects or
you are using a model that assumes no interaction
(e.g. some randomized blocks models; Chapter 10).
Log-transformed data may better reflect the
underlying nature and interpretation of an inter-
action term.

4.4 Standardizations

Another change we can make to the values of our
variable is to standardize them in relation to each
other. If we are including two or more variables in
an analysis, such as a regression analysis or a more
complex multivariate analysis, then converting
all the variables to a similar scale is often impor-
tant before they are included in the analysis. A
number of different standardizations are pos-
sible. Centering a variable simply changes the var-
iable so it has a mean of zero:

yi!yi# ȳ (4.3)

This is sometimes called translation (Legendre &
Legendre 1998).

Variables can also be altered so they range
from zero (minimum) to one (maximum).
Legendre & Legendre (1998) describe two ways of
achieving this:

yi! and yi! (4.4)
yi # ymin

ymax # ymin

yi

ymax
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Table 4.1 Means for treatment and control
groups for an experiment conducted at two times.
Artificial data and arbitrary units used.

Log-
Untransformed transformed

Time 1 Time 2 Time 1 Time 2

Control 10 50 1.000 1.699
Treatment 5 25 0.699 1.398
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